In the Great Lakes region, many new homes are being constructed in sensitive shoreline areas, effective programs for regulating onsite wastewater treatment systems (OWTS) are more important than ever. One problem is that the most attractive sites for new homes, such as those along inlets and inland lakes, often have sandy soils and high water tables, making them unsuitable for conventional, gravity-fed septic systems. Therefore, homeowners desiring to build on these sites often compensate for the limiting conditions by using alternative OWTS technologies and techniques.

These alternative OWTS use components such as pumps, aerators, filters, and controls, a fact which raises the importance of periodically verifying that everything is operating properly (Sexstone, 2000). Not only can these components fail, their failure tends to have more significant consequences due to their proximity to recreational water bodies and environmentally sensitive areas.

The use of alternative technologies also places greater burden on the permitting process, especially in locales operating under older OWTS codes. Older codes tend to be fairly prescriptive, specifying a conventional gravity-fed system whose size is determined by the amount of wastewater being treated and, in some cases, by the characteristics of the site. In general, older OWTS codes do not accommodate homeowners who desire to build on sites not particularly suitable for gravity-fed conventional systems. However, given that property taxes are a major source of revenue for rural townships, such as those surrounding the Great Lakes, local regulators often face political pressure to allow variances. Although homeowners compensate for a site’s limiting conditions by using “alternative” or “experimental” technologies, assessing such designs is a major challenge.

To help communities ensure that all OWTS—alternative or conventional—are designed, installed, and maintained properly, the U.S. Environmental Protection Agency (EPA) issued guidelines that describe the main elements of an effective OWTS program (EPA, 2003). The guidelines describe five management models, with the more complex models associated with the use of alternative OWTS in environmentally sensitive areas. In 2003 and 2004, we conducted a survey of officials responsible for OWTS regulatory programs in the Great Lakes region, with the main goal being to assess the challenges they faced, both in general and in implementing the EPA guidelines.

This paper summarizes our findings for program elements related to the permitting and maintenance of alternative systems. A previous paper reported on program capacities associated with the EPA’s basic management model, which assumes that sites are suitable for the use of conventional gravity-fed systems (Halvorsen and Gorman, 2006). Before describing our survey methodology and summarizing our findings, we first place the EPA management guidelines in a broader context and briefly describe the management models.
Background

General OWTS Trends

Many OWTS regulatory programs evolved under assumptions that few people would view as valid today. Based on the structure of early codes, these assumptions appear to be as follows:

- that a particular type of technology (i.e., conventional septic tanks using gravity to discharge liquids into a drainage field) would be used;
- that a prescriptive design, if installed properly, would continually perform as expected; and
- that onsite systems would either last forever or be replaced by sewers before their performance deteriorated significantly.

These assumptions have their roots in the period following World War II, when the use of onsite wastewater systems grew dramatically with the rapid development of automobile suburbs. Most of these areas were not served by urban sewers, so developers turned to a technology long used on farms: a short sewer line to an underground tank that drained into a soil absorption field. This technology allowed post-war developers to dispose of residential wastewater without constructing sewers (Rome, 2001).

With little, if any, regulatory oversight, problems occurred. Most residents, having no experience with septic systems, paid little attention to their systems until after they backed up. Problems related to contaminated well water and foul-smelling wastes from inoperable systems became commonplace. Many communities that initially relied on septic systems eventually turned to centralized sewers, with billions of dollars in state and federal funds going toward the construction of these sewers and centralized wastewater treatment systems (Melosi, 2001). Over time, many people came to see the use of septic systems as an interim solution, providing new residences with some wastewater treatment until enough people moved into an area to justify sewers (Eddy, 2001). The first wave of OWTS codes, which depended primarily on the use of construction permits, generally reflected the view that onsite systems were temporary solutions that would eventually be replaced by sewers (Kreissl and Suhrer, 2003).

However, this pattern of sewers replacing OWTS has become less of a norm. First, state and federal subsidies for the construction of sewers and wastewater treatment plants have decreased, making it more difficult for communities to pay for centralized systems. Second, land use patterns in newly developed areas tend to be less amenable to sewers. While 25 percent of all U.S. homes depend upon onsite systems for wastewater treatment, the percentage of new homes being constructed with onsite systems is even higher (EPA, 2003, p. 3). In many of these areas, decentralized solutions involving OWTS are a permanent alternative to sewers.

Experience has also shown that the performance of all systems degrades over time. Through a combination of many factors—overloading, material deterioration, homeowners neglecting to pump, disposal of inappropriate materials, changes in soil properties due to compacting and matting—the effectiveness of most systems gradually declines. Due to factors such as these, conventional systems generally have an expected lifetime of 20 to 30 years. Furthermore, the EPA (2003, p. 4) cites census data that indicates over half of all OWTS in the U.S. are over 30 years old, suggesting that those systems are too old to be working properly. Indeed, in that same report, the agency estimates that ten to twenty percent of all OWTS are operating at a degraded level of performance.

The increasing use of alternative technologies has further undermined any assumption that OWTS, once constructed and permitted, could be forgotten. To ensure that these systems are part of their program. In Northeast Ohio, CT Consultants (2001) performed a field survey of OWTS in seven counties, finding system failure rates between 19 and 20 percent. Mancl (1990 and 1999) surveyed all local OWTS regulatory program administrators in Ohio in 1987 and 1997. She found a number of problems, including a 1987 average OWTS failure rate of 27 percent, a great deal of variation in program quality around the state, and the allowance of unproven OWTS technologies.

In another part of the Great Lakes region, Schwartz et al. (1998) per-
formed a field survey of homeowners with OWTS and drinking water wells in three upstate New York counties. They found that one-third had never pumped their septic tanks, a factor that may contribute to one-third of homeowners’ wells testing positive for fecal coliform. In 2000, McNulty and Lindbo (2005) surveyed homeowners with OWTS in nine rural North Carolina counties. They found that about 43 percent erroneously believed that OWTS tanks didn’t need to be pumped out until they failed. Olson and Gustafson (2001) conducted a survey of Minnesota homeowners participating in OWTS education classes and found that they were much more likely to perform appropriate OWTS management behaviors after attending the class, suggesting that motivated homeowners can change behavior after learning more about their systems.

Noah and Lake (2000) describe the results of 1997 focus groups with a broad set of OWTS stakeholders in 12 western Washington counties. Interested in understanding barriers to the adoption of alternative systems, they identified the cost of permitting and difficulty of regulating as two of the main barriers. Johnson et al. (2001) report on a survey of OWTS within one Michigan watershed that found individual system failure rates of between 20 to 52 percent depending upon the county.

In the period since these studies have been published, the EPA has released guidelines for the effective management of OWTS programs (Hoyge et al., 2001, and EPA, 2003). Our study examines the degree to which locales along the Great Lakes operate OWTS regulatory programs consistent with these guidelines, with this article focusing on management models that assume alternative OWTS are being permitted in environmentally sensitive areas.

EPA’s Management Models

The management guidelines published by the EPA are designed to help local officials ensure that all systems (conventional and alternative) are, first, designed and installed properly and, second, continue to operate properly. These guidelines describe five management models (see Table 1), each matching a level of regulation to both the technology being used and the environment in which it is sited. For example, in areas suitable for conventional septic systems, the EPA sees a basic “Homeowner Awareness” management model as sufficient. This model relies primarily on traditional construction permits and on reminding homeowners of their responsibilities. At the other extreme are cases in which the desired level of environmental protection is enough to recommend that OWTS permitting be integrated into a community’s larger planning efforts. In such cases, the EPA recommends that regulators permit the use of OWTS only if the operation and maintenance of these systems are managed by “responsible management entities (RMEs).” Otis et al. (2001) and Walsh et al. (2001) describe some of the preliminary work that was done to develop these models.

In this article we assess the capacity of Great Lakes programs to permit and monitor OWTS in situations where the EPA recommends a management model beyond the basic “Homeowner Awareness” model. We focus on cases in which alternative systems are used to compensate for difficult site conditions, with the “Maintenance Contract” model being the minimum recommended. We also briefly examine program capacities associated with the EPA’s “Operating Permit” model, which requires homeowners to periodically verify that their system is performing as designed, and “Responsible Management Entity” models, in which an RME is created to manage a group of OWTS.

Table 1—Management Models Proposed by the USEPA

<table>
<thead>
<tr>
<th>USEPA Management Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Homeowner Awareness Model</td>
<td>Represents the minimal level of management. Appropriate for cases in which sites without sewer access are suitable for conventional septic systems. Relies on construction permits and public awareness.</td>
</tr>
<tr>
<td>2 Maintenance Contract Model</td>
<td>Represents the level of management desirable when alternative technologies are used and for areas of moderate environmental sensitivity in which sites are marginally suitable for conventional septic systems. Includes service contracts as a management tool.</td>
</tr>
<tr>
<td>3 Operating Permit Model</td>
<td>Represents the minimum level of management necessary to protect areas that are environmentally sensitive, such as wellhead protection zones, shellfish waters, and water-contact recreational areas. Includes performance monitoring.</td>
</tr>
<tr>
<td>4 Responsible Management Entity O&M Model</td>
<td>Represents a level of management appropriate for environmentally sensitive areas in which onsite and clustered systems are the main form of sewage treatment. Establishes an entity to manage the maintenance of all systems.</td>
</tr>
<tr>
<td>5 Responsible Management Entity Ownership Model</td>
<td>Represents a level of management appropriate for environmentally sensitive areas in which onsite and clustered systems are the main form of sewage treatment. Establishes an entity that owns and manages all systems.</td>
</tr>
</tbody>
</table>

Methodology

To assess the capacity of locales along the Great Lakes shoreline to implement the EPA guidelines, we first identified program elements that, based upon preliminary interviews and information gathering, appeared to vary widely. (Each of the five management models consists of many program elements.) We then designed survey questions to assess the capacity of locales to implement these program elements. We also incorporated questions that as-
sessed the specific types of problems regulators faced, regardless of their program capacity.

We determined which program elements to focus on after interviewing a subset of regulators in the region responsible for OWTS regulatory programs. In these preliminary interviews, we asked individuals to describe the regulatory structure in their state, their general permitting process, and any challenges or problems they could identify. Based on the interviews, we determined that the most significant challenges included issues related to the permitting of alternative systems and the operation and maintenance of all OWTS systems. These interviews, in combination with the EPA’s recommended guidelines, formed the basis for a set of survey questions concerning agency permit processes, homeowner information databases, maintenance contract requirements, and communication with homeowners. We included both closed- (quantitative) and open-ended questions in the survey, which allowed us to standardize responses to some questions across survey respondents while still giving them the opportunity to discuss at length the strengths, weaknesses, and unique characteristics of their local regulatory programs. A copy of the survey is available online at http://www.nesc.wvu.edu/survey_SFQW06.pdf as an appendix to this article.

Our population consisted of OWTS regulatory agencies bordering the Great Lakes in the U.S. and Canada (see Figure 1). Eight states have counties that border the Great Lakes: New York, Pennsylvania, Ohio, Michigan, Indiana, Illinois, Wisconsin, and Minnesota. In most of these states, administration of OWTS regulations is performed by environmental health offices within larger health departments that also have responsibility for administering regulations governing food services and other programs. Except for Michigan, each state has a statewide regulatory code that local agencies enforce, mostly at the county level. In Michigan, codes are created mostly at county level but also at the regional (multi-county) level. Legislation empowering Michigan’s Department of Environmental Quality, which currently has loose oversight over local programs, to create a statewide code is under consideration (Senate Bill No. 0071, Michigan Legislature, 2005).

For the U.S. portion of our study area, we surveyed 100 percent of the 67 county or regional (multi-county) agencies that border a Great Lake and that regulate OWTS. All of the regulatory administrators received a paper copy of the survey along with a cover letter explaining our research goals. Unless they indicated that they were unwilling to participate, each administrator was contacted at least three times via the phone to arrange an appointment before we designated them a nonrespondent. In the end, 91 percent of the U.S. administrators responded to our phone survey with only six refusals out of 67 regulatory agencies. One individual did not respond from each of the following states: Illinois, Minnesota, New York, and Ohio. Two did not respond from Wisconsin.

In Canada, Ontario is the only province bordering the Great Lakes. Its governmental structure for regulating septic systems is different than in the U.S. in some places, regulation occurs at the municipal level. Elsewhere it occurs at the regional (multi-county) level. In addition, in incorporated areas, building departments oversee OWTS permit programs; outside of these areas, OWTS are permitted and regulated by local or regional depart-
ments, including health units and conservation authorities. In total, there are 33 local Ontario offices governing OWTS management that border a Great Lake. While it was important to survey Ontario regulators, our focus on the capacity of local agencies to implement EPA management models is less relevant there. Therefore, to maximize our coverage of the different regions and governmental levels within Ontario, we surveyed one office at each level within a region. Depending upon the region, we surveyed a regional (unincorporated area), township or county level, and/or municipal level (building department) office.

When U.S. and Canadian regulatory entities are combined, we at-

Figure 1 — The Great Lakes Region

Source: Kristine Bradof, Michigan Technological University
or province and the percentage of total respondents they represent.

Results

This section summarizes the capacity of the responding locales to permit and monitor the use of alternative OWTS technologies. First, we examine the extent to which agencies permit alternative technologies. Then, we summarize their capacity to implement programs related to the EPA’s “Maintenance Contract” model, which is the one most relevant to alternative technologies. Next, we briefly examine the capacity of locales to implement program elements related to the EPA’s “Operating Permit” and “Responsible Management Entity” management models. Finally, we summarize state patterns, with the focus on the relationship between state codes, the flexibility locales have in permitting alternative technologies, and the capacity of those locales to manage the appropriate program elements.

Experience with Alternative Systems

In general, we consider any system more complicated than a septic tank with a gravity-fed drainfield to be an alternative system. However, in the course of this project, we learned that regulators do not always use the same criteria to categorize OWTS as conventional and alternative. The term conventional tends to mean systems with which regulators are familiar and that are, to some extent, integrated into their regulatory code. Alternative seems to mean systems that are newer to agencies, require some kind of variance from code, or are only rarely permitted. In addition, some regulators use different words, such as nonconventional and experimental, to describe what we have been referring to as alternative, with designations such as experimental sometimes carrying specific code requirements.

Precise definitions aside, all but one locale in our study permitted what we would consider to be alternative OWTS. In most locales (58 percent), respondents reported that alternative systems account for less than one-fifth of the systems being permitted (see Table 3). However, 37 percent of respondents indicated that more than 40 percent of all permits were for alternative OWTS. Of those, 10 respondents (13 percent) indicated that over 80 percent of their permits were for OWTS.

We also learned very quickly that different regulators use different terms to describe specific types of alternative technologies, making it difficult to compile a list of systems with which different locales have experience. When we asked regulators what types of alternative systems they permitted, 55 identified a wide variety of types, referring to both generic technologies and systems marketed by specific manufacturers. In addition, 18 of those surveyed simply answered that they allow what their code allows. Only one indicated that alternative systems were not permitted. Table 4 lists the types of systems and the frequency those systems are mentioned as allowed within the surveyed jurisdictions. As much as possible, we have preserved the phrases and language used by respondents to provide some sense of the difficulty encountered in tabulating the different types of alternative systems. If nothing else, the variety suggests why it is difficult to ensure that homeowners—and, for that matter, service contractors—fully understand the differences between systems. It also gives some indication as to why determining the requirements of different systems during the permitting process can be difficult.

When we asked which type of alternative system regulators thought worked best within their jurisdiction, about a third indicated mound systems. It is important to keep in mind that some regulators do not view mounds as alternative systems, because they are so frequently used within their districts. For example, one respondent told us that 95 percent of the new systems they permit are mounds, so that they do not consider them as truly alternative. On the other hand, others consider them to be alternative technologies because they

Table 2—Great Lake States and Province, Shoreline Lengths, and Number of Offices Surveyed

<table>
<thead>
<tr>
<th>State/Province</th>
<th>Number of offices surveyed</th>
<th>Percentage of total surveyed</th>
<th>Miles of Great Lakes shoreline</th>
<th>Number of OWTS in surveyed area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>2</td>
<td>3</td>
<td>63</td>
<td>50,000</td>
</tr>
<tr>
<td>Indiana</td>
<td>3</td>
<td>4</td>
<td>45</td>
<td>50,000</td>
</tr>
<tr>
<td>Michigan</td>
<td>25</td>
<td>32</td>
<td>2,963</td>
<td>455,000</td>
</tr>
<tr>
<td>Minnesota</td>
<td>2</td>
<td>3</td>
<td>189</td>
<td>35,000</td>
</tr>
<tr>
<td>New York</td>
<td>8</td>
<td>11</td>
<td>408</td>
<td>200,000</td>
</tr>
<tr>
<td>Ohio</td>
<td>7</td>
<td>10</td>
<td>310</td>
<td>110,000</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>1</td>
<td>1</td>
<td>51</td>
<td>25,000</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>13</td>
<td>18</td>
<td>820</td>
<td>110,000</td>
</tr>
<tr>
<td>Ontario</td>
<td>13</td>
<td>17</td>
<td>4,331</td>
<td>Not Available</td>
</tr>
<tr>
<td>TOTAL</td>
<td>74</td>
<td>100</td>
<td>9,182</td>
<td>1,035,000</td>
</tr>
</tbody>
</table>

2. Number of OWTS rounded to the nearest 5,000; based on 1990 census data. (OWTS data not collected in 2000.)

Table 3—Percentage of 2002 OWTS Permits in Locales

<table>
<thead>
<tr>
<th>Percentage of 2002 OWTS Permits Given for Alternative Systems</th>
<th>Percentage Respondents Selecting This Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% or less</td>
<td>58</td>
</tr>
<tr>
<td>Between 20 and 40%</td>
<td>6</td>
</tr>
<tr>
<td>Between 40 and 60%</td>
<td>14</td>
</tr>
<tr>
<td>Between 60 and 80%</td>
<td>10</td>
</tr>
<tr>
<td>Between 80 and 100%</td>
<td>13</td>
</tr>
</tbody>
</table>

Small Flows Quarterly Winter 2006, Volume 7, Number 1
are more complex than conventional gravity-fed systems, often requiring pumps to lift the effluent and usually being more subject to freezing and leakage. Another one percent identified recirculating sand filters, which probably included jurisdictions that do not consider mounds to be alternative. About ten other types of systems were also identified, each by one or two respondents. Fourteen percent did not identify specific types of systems but indicated that site conditions would determine which system would perform best. About 15 percent said they couldn’t answer the question because they don’t have enough experience with alternative systems.

Table 4 — Permitted Systems Defined by Respondents as Alternative

<table>
<thead>
<tr>
<th>System Type</th>
<th>Number Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mound systems</td>
<td>33</td>
</tr>
<tr>
<td>Aerobic Treatment Units (ATU’s), general aeration systems</td>
<td>27</td>
</tr>
<tr>
<td>Sand filters (also used as pre-treatment units)</td>
<td>24</td>
</tr>
<tr>
<td>Peat filters (Ecoflow), textile filters, or drip irrigation systems</td>
<td>15</td>
</tr>
<tr>
<td>Pressure Distributed Systems and pump systems</td>
<td>13</td>
</tr>
<tr>
<td>The Infiltrator, recirculation and media filtering systems</td>
<td>10</td>
</tr>
<tr>
<td>Alternative Treatment Systems (ATS’s)</td>
<td>9</td>
</tr>
<tr>
<td>Constructed wetlands</td>
<td>9</td>
</tr>
<tr>
<td>Enviro-chambered systems</td>
<td>8</td>
</tr>
<tr>
<td>Raised filter bed systems</td>
<td>8</td>
</tr>
<tr>
<td>Trench systems</td>
<td>7</td>
</tr>
<tr>
<td>Biofilters</td>
<td>6</td>
</tr>
<tr>
<td>Stabilization ponds or oxidation lagoons</td>
<td>6</td>
</tr>
<tr>
<td>Holding tanks for failing OWTS</td>
<td>5</td>
</tr>
<tr>
<td>Subsurface materials-easy flow gravel-less</td>
<td>5</td>
</tr>
<tr>
<td>Drain fields</td>
<td>3</td>
</tr>
<tr>
<td>Nibblter Systems</td>
<td>2</td>
</tr>
<tr>
<td>Advantex</td>
<td>1</td>
</tr>
<tr>
<td>Allow no alternative systems</td>
<td>1</td>
</tr>
</tbody>
</table>

Alternative Systems and Permitting

The permitting process forms the foundation for all of the EPA management models regardless of whether conventional gravity-fed systems or alternative technologies are involved. It is a critical time when a site’s suitability for OWTS is determined. At this point, site evaluators decide whether a parcel’s characteristics (including its size, soil type and depth, distance to bedrock and groundwater, and location of features such as wells) warrant permitting the construction of a conventional system, an alternative system, or no system at all. Here, we summarize how alternative systems complicate the permitting process and assess the challenges that Great Lakes OWTS programs face in handling those complications.

One issue for permitting agencies is the degree to which OWTS codes are flexible enough to accommodate alternative technologies. Prescriptive codes that assume the use of conventional, gravity-fed systems tend not to facilitate the systematic evaluation of alternative systems. To what extent is the permitting of alternative systems integrated into septic system codes for locales bordering the Great Lakes? Sixty-eight percent reported that it is. However, 53 percent of the regulators agreed with the statement, “In order to protect human and environmental health, our current local and/or state code needs to be updated to more effectively regulate alternative OWTS.” Thus, nearly all jurisdictions allow the use of alternative systems, but a significantly smaller percentage have codes that include what regulators see to be adequate standards and procedures for permitting alternative systems.

The use of alternative technologies also complicates the permitting process, because a greater amount of effort must go into evaluating designs. In locales where codes assume the use of conventional gravity-fed OWTS, homeowners must request a variance to use something different, with the request accompanied by the submission of design plans. Then, regulators must assess the ability of the system specified in the variance to adequately treat wastewater.

Indeed, when asked what challenges they experienced with regard to alternative systems, some of the most frequently described difficulties had to do with the cost and challenge of keeping up with the changing technologies (22 out of 74 or 30 percent). When asked, “Does your agency fully recover the costs of permitting alternative systems through permit fees?” Forty-three percent said no. Of those, 53 percent said they were having trouble funding this work (23 percent overall). These responses suggest that a significant number of agencies are struggling to deal with costs related to permitting these systems, which makes it more likely that they will have to cut programmatic corners to make up the shortfall. Assuming that these cuts come from OWTS-related regulatory programming, it could mean putting costs off into the future, at which point failures resulting in direct risks to human and environmental health could force agencies and municipalities to spend even more. As the demand for alternative systems rises, as many of our respondents told us it is currently doing, and many of their state appropriations continue to decrease, as many also told us was happening, the potential for future problems with alternative systems increases. Addressing the problem, however, may involve not only securing more funds, but also developing an organization with a different skill mix.

We also asked an open-ended question regarding the steps in the permit process required within each jurisdiction. These responses establish that locales are meeting minimum site evaluation standards for making determinations about the suitability of sites for OWTS. However, important variations exist relevant to the permitting of alternative technologies. In Wisconsin, homeowners are expected to hire certified professionals to inspect the site and design an appropriate OWTS,
whether conventional or otherwise. In Indiana, homeowners also hire certified soil scientists to determine site conditions, but agency personnel get more involved in the interpretation of the results. In Lake County, Illinois, agencies employ certified soil scientists who perform the site evaluations, and homeowners must hire a certified system designer. In many Michigan counties (or multi-county regions), agency personnel perform the site evaluations and work more directly with contractors and homeowners than agency personnel in states such as Wisconsin. Given that codes are developed at the local level in Michigan, significant intrastate variation is also seen there.

We also asked regulators who determined the types of systems allowed within their jurisdictions. In response, 53 percent said their agency had complete authority to determine the type of system appropriate. Sixteen percent said they are limited by local regulations, which specify the types of systems allowable, and 37 percent said they are limited by state regulations, which specify what types of systems are allowable. Nineteen percent said they make decisions at the local level when a conventional system is being permitted, with the state (or province) issuing alternative system permits. (Responses to this question were not mutually exclusive, and some respondents selected more than one answer.)

These variations in requirements from jurisdiction to jurisdiction—codes and regulatory models that vary in their degree of flexibility, a greater or lesser reliance on private OWTS professionals for site evaluations and system design, and the different roles that the state and local agencies play—suggest that an important change is still underway in OWTS regulation. Although the EPA management guidelines do not explicitly endorse one pattern of organization or execution over another, they do assume that agencies have the flexibility to permit alternative systems and have good access to the services of skilled private-sector OWTS professionals. Therefore, the EPA guidelines reinforce a general change toward codes that are less prescriptive and more accommodating to alternative technologies.

Maintenance Contracts

A key expectation in the EPA’s "Maintenance Contract" model, which is the minimum level of management recommended if an agency permits alternative OWTS, is that the agency require homeowners to purchase and renew yearly maintenance contracts for service (EPA, 2003). EPA also recommends that the local agency require proof of a maintenance contract prior to issuing a permit, that the homeowner be required to demonstrate periodic renewal of this contract, and that a database including this information be regularly updated.

We asked respondents if they (or the state) require an operation and maintenance contract as a condition of permitting alternative systems. Sixty-two percent said “yes” for at least one type of system, including one agency that has taken over responsibility for performing this service. Thirty percent of respondents require proof of contract renewal for every year of the system’s life. Forty-two percent of those that require a maintenance contract also require that the service provider report to them on the performance of the system.

Even if agencies require homeowners to secure maintenance contracts, problems may still arise if there are not enough trained professionals to service them. Therefore, the EPA guidelines recommend that agencies work to ensure that their jurisdictions have sufficient numbers of well-trained, competent, and reliable service providers to maintain these types of systems. Sixty percent of respondents said that their jurisdiction had sufficient numbers of reliable maintenance contractors to adequately service alternative OWTS.

These responses show that the majority of agencies are issuing alternative system permits but are not requiring yearly service provider reports or proof of a continuing maintenance contract. As described above, this is a potential problem because homeowners who are unaware of the need for regular maintenance or are unwilling or unable to pay for regular maintenance may have systems that are failing and not operating as designed. Given that these systems are typically used to compensate for difficult site conditions or to provide additional protection to a sensitive environment, their failure is particularly likely to result in negative consequences. In addition, while a majority of regulators do feel that sufficient numbers of reliable service providers are operating within their jurisdiction, a fair number do not. This potential lack, coupled with the fact that most jurisdictions do not require proof of contract renewal, mean that most agencies are not meeting the EPA’s recommendations for a maintenance contract management model, even though nearly all of them are permitting higher maintenance alternative systems.

Respondents also explicitly identified concerns with their ability to ensure that alternative systems continue to operate as designed. When asked what alternative system-related challenges they face, 43 out of the 74 respondents (58 percent) volunteered some issue related to ensuring that these systems were working properly over the long run. One of the most frequently mentioned issues was their agency’s inability to follow up on the renewal of maintenance contracts. Reasons why this was a problem included the lack of a legal mechanism for enforcing renewal requirements, the lack of a computerized database for tracking actions, and the lack of staff time to effectively check or re-inspect the systems. Another frequently mentioned problem had to do with ensuring that new homeowners were aware of, and compliant with, the proper maintenance of their systems.

Alternative Systems, Record Keeping, and Communication with Homeowners

All of the EPA management models recommend that regulatory agencies be able to track the names, addresses, and system types of all OWTS homeowners within their jurisdiction. This information is especially necessary if an agency is to monitor maintenance obligations associated with alternative systems. Along these lines, 85 percent of respondents said they had a computerized database of OWTS permits, and an additional four percent said they did not have one but it was in development. Therefore, nearly all agencies have, or are in the process of developing, a computerized data-
base of homeowners and are moving in the direction of the EPA's recommendations for computerized databases.

However, significant gaps in information exist. Some of those gaps involve information about systems installed before permits were required or before an agency's database was developed, resulting in missing information for older conventional systems. This lack of information about aging septic systems is a significant concern. However, in terms of an agency's ability to track alternative systems, a more significant gap in information arises when agencies have no mechanism to update their records when transfers of ownership occur. Given the rapidity of homeownership turnover in the average North American community, this means that agencies without a mechanism for updating their records are losing the names of homeowners who currently own OWTS within their jurisdiction. Without the ability to personalize contacts with homeowners, such as mailed maintenance reminders, it is difficult to ensure that mailings reach the desired homeowner.

To ensure that records are kept current, the EPA recommends that OWTS be inspected whenever a house changes ownership. Our results indicate that most (86 percent) of surveyed jurisdictions are not meeting the EPA's recommendations for inspections when properties change ownership. These agencies are missing a critical opportunity to become aware of, and make contact with, new owners. They are also missing a critical opportunity to partner with financial institutions that already commonly require OWTS inspections. Agencies could, of course, contact owners without requiring an inspection, but responses to another survey question show that this is not happening. In answers to a related question regarding when regulators update their computerized permit databases, only 20 percent of respondents told us that they update their database every time properties change hands.

When homes serviced by OWTS are transferred to new owners in areas where there is no required contact with a regulatory agency, the agency is also missing an opportunity to inform homeowners who may not be aware of the type of OWTS they have acquired. If it is an alternative OWTS, they may not be aware of the complexities of the system or what they need to do to keep it in proper working order. They might not realize that they are supposed to secure a maintenance contract for their onsite system. This is particularly likely to occur when the regulatory agency either does not require homeowners to submit yearly proof of their maintenance contract or takes no action when that proof is not provided. This means that most agencies are losing track of the names of homeowners with OWTS, making it more difficult to communicate with them.

Operating Permit Management Model

According to the EPA guidelines, agencies should have the ability to administer operating permits in environmentally sensitive areas. For example, in a wellhead protection zone, any water that flows out of a drainfield recharge an aquifer supplying public drinking water, and special attention is warranted. Unlike construction permits, operating permits require performance monitor-

Any gap in an agency's capacity to implement a "Maintenance Contract" management model translates into an inability to implement a successful "Operating Permit" management model as well. In addition, gaps in information related to all types of OWTS (conventional as well as alternative systems) are more relevant here, because the justification for stringent monitoring stems more from the need for greater protection than from the type of technology involved. Hence, insufficient knowledge about older systems installed before permits were required becomes a critical issue here. Given the gaps that already exist in the capacities of most agencies to use maintenance contracts as a management tool, we did not specifically evaluate the ability of agencies to manage operating permits. However, given those gaps, it appears that most locales along the Great Lakes do not have the capacity to implement all the program elements associated with the "Operating Permit Management Model."

A mitigating factor is that the protection of critical aquifers is often driven by additional policies and regulatory requirements. In such cases, there may be more support for implementing program elements for which agencies otherwise do not have the backing. In cases where agencies are understaffed and underfunded, even this support may not be enough. In such cases, other arrangements, such as those described in the following section, may be more effective.

Responsible Management Entity (RME) Models

RMEs are public or private organizations responsible for the operation, performance, and management of onsite systems within specific service areas. RMEs make the most sense to use when it is possible and desirable to manage a cluster of OWTS as a group. Such a scenario may occur when individual homeowners surrounding an inlet or small inland lake desire to protect that body of water. An RME could also be established when an agency desires to protect an environmentally sensi-
tive area, such as wellhead protection zone. In the "RME Operation and Maintenance" model, a homeowners’ association could choose to hire an RME to take over the management of onsite systems owned by their members. In the "R&M Ownership" model, the RME would own the onsite systems and serve as a type of utility.

RMEs provide a mechanism for agencies to interact with a few key entities in ways not possible for the entire population of OWTS owners. Ownership RMEs also make other configurations of OWTS more possible, such as cluster systems in which several homes share a treatment and dispersal system. However, in many states, the regulatory authority responsible for managing OWTS depends on the level of discharge, with health departments responsible for smaller flows associated with residences and environmental agencies responsible for the larger flows associated with cluster systems. In some states, a reevaluation of both that dividing line and the rules governing cluster systems would make sense, with two respondents felt that their code was solid and could not suggest any major or minor changes. Of those who desired changes, there were few patterns among the answers. Some of the responses conflicted, with two jurisdictions grappling with the same problem being critical of the solutions suggested by the other. In some cases, respondents were critical of changes that they had already implemented, while other regulators suggested that same type of change as the solution to their own problems.

For instance, one regulator wanted to require more regular pumping, while a regulator in a district that had this requirement wanted to lengthen required intervals for seasonal homes. A few wanted more design flexibility, while another wanted more standardization. Some regulators wanted operation and maintenance requirements for alternative systems, while one wanted a reduction in these requirements. A few wanted more local control over OWTS decision making, while another wanted to give control and responsibility back to the state. One respondent wanted to require that everyone connect to a sewer, while another in a jurisdiction that currently requires such connections desired to mandate this only for failing systems.

In general, we can group the responses into six categories: general changes; alternative systems; operation and maintenance; service providers; permitting, including design and siting specifications; and post-installation inspections. Of the desired changes that were of a gen-
eral nature, the most frequently cited concerned enforcement. These mostly had to do with eliminating loopholes and increasing their department’s enforcement authority.

Eight individuals specifically wanted changes that addressed issues with alternative systems. These included creating operation and maintenance requirements, shifting authority from the state to the local level regarding approval of systems, addressing alternative systems within their code, and standardizing alternative system design requirements to reduce the need for engineers and to make the permitting process less expensive. Another wanted to adopt a requirement that licensed engineers create all plans. One regulator wanted to take over monthly maintenance and inspection of alternative systems from private contractors to identify failing systems more quickly; they currently inspect them yearly, as do at least two other surveyed departments. One of the locales had already taken over operation and maintenance of alternative systems, and the regulator from that locale mentioned that finding the time to keep up with this work was difficult.

A number of individuals wanted changes regarding operation and maintenance requirements for all systems. Another suggested creating a collective special assessment district, what the EPA might refer to as a public RME, with homeowners charged for maintenance on a monthly basis as if they were connected to a sewer. Similarly, another regulator wanted the health department to have the authority to require management districts rather than have that decision controlled by homeowner associations. There were only two comments regarding changes to regulations aimed at service providers: one wanted increased requirements for certified soil testers, and another wanted to introduce contractor liability for system performance. Many of the desired changes had to do with specific components of the permit process. Two regulators wanted to increase minimum required lot sizes to two acres, and two wanted to require the enlargement of dispersal systems. Another individual simply wanted size requirements to better fit site condi-

tions. One regulator wanted to ensure that the capacity of adjacent sites to develop was protected when OWTS site locations were authorized, and another wanted a minimum standard for isolation of OWTS from the water tables. One regulator wanted minimum required distances from structures, including wells and docks. Some comments had to do with specific OWTS design elements, such as requiring effluent filters; requiring larger, heavier pipes to the drainfield; and changing loading requirements for mounds to mandate longer, narrower systems. Finally, several individuals wanted changes in the appeals process. One wanted it “updated;” another wanted to get the “politics” out of it. Still another wanted to get some technically trained professionals on an appeals board currently composed entirely of health professionals.

Eleven respondents desired mandatory post-permit inspections of all or some systems. Most of those respondents also wanted a point-of-sale or transfer inspection requirement. A few had a point-of-sale/transfer requirement and found it insufficient; they desired regular inspections, such as once every few years. Another wanted random inspections, explaining that some homeowners turn off aerator pumps to save on electricity charges. One individual wanted to require a mandatory inspection of every system when it was 25 years old.

This range of responses suggests that there are no specific changes that will serve as a “silver bullet” capable of satisfying all regulators. At the same time, these responses do indicate that the increasing use of alternative systems is placing additional challenges on regulators, and that many of the improvements they desire are related to the permitting and maintenance of these systems.

State and Province Level Patterns

Given that most locales follow a state- or province-wide sanitary code, it makes sense to look for patterns within states and Ontario. For example, if all regulators in a given state indicate that they enforce maintenance contracts, it suggests that their state code is effective in requiring or encouraging this particular program element. On the other hand, if all regulators in a given state have indicated that they do not enforce maintenance contracts, it suggests that the state code may be ineffective in dealing with this program element. This section summarizes the extent to which general patterns can be identified for Ontario and states in which four or more regulators were interviewed: Ohio, New York, Michigan, and Wisconsin. Too few regulators were interviewed in the remaining states (Indiana, Minnesota, Illinois, and Pennsylvania) to establish any meaningful pattern.

Wisconsin

We surveyed 13 regulators within Wisconsin, with two nonresponding agencies. In Wisconsin, OWTS are usually regulated by of-
cies with responsibility for planning and/or zoning. Only three of the surveyed agencies had responsibility for public health protection. The responses provided by regulators in Wisconsin were consistent with a regulatory system that is less prescriptive (more flexible) in the permitting stage and more stringent than average in managing program elements related to homeowner awareness and maintenance contracts. For instance, the state code requires septic tank pumping at least every three years.

The regulation of OWTS by planning offices raises interesting questions about the relationship between OWTS permits and planning. It is possible to use OWTS permits as a de facto zoning tool by denying construction permits (and denying the opportunity to use alternative technologies) to developers who desire to build on sites in environmentally sensitive areas or areas poorly suited for conventional OWTS. However, our results suggest that such an approach is not realistic; all agencies are under pressure to permit alternative technologies so that developers can compensate for limiting site conditions. Wisconsin’s experience appears to suggest another approach: accommodate alternative technologies but require maintenance contracts and connect OWTS permitting to planning efforts.

Based on the survey, Wisconsin regulators permit a greater percentage of alternative systems than most other Great Lakes regulators. Nine of them told us that 40 percent or more of their 2002 permits were for alternative systems of various types. At the same time, Wisconsin regulators were much more likely than others to also tell us that maintenance contracts were required for the permitting these systems, with 12 (or 92 percent) of them saying this as compared to 61 percent of the 74 respondents. The survey showed that Wisconsin counties were particularly likely to have strict operation and maintenance requirements, with ten counties falling into this category. Wisconsin regulators were also particularly likely to tell us that they had sufficient numbers of reliable service providers to fill these contracts. We did not ask what agencies did in the way of training to develop this population of service providers, but requiring maintenance contracts certainly helped by creating a sufficient demand for their services.

In addition, Wisconsin was the only state or province surveyed where 100 percent of the regulators told us that they could mail something to every homeowner with OWTS in their jurisdiction if they wanted to. Of the states or provinces where more than two regulators were interviewed, Wisconsin was much more likely than the others to tell us that they had sent pumping or other types of maintenance reminders to homeowners (54 percent had done so in this state). Not surprisingly, most Wisconsin regulators disagreed with the statement that their state or local code needed to be updated to better regulate alternative systems. These regulators also reported relatively few OWTS failures coming to their attention than most other regulators surveyed. Wisconsin was also home to one of three counties within the study area that had at least one public and private RME. Another Wisconsin county reported having at least one public RME.

Although Wisconsin is often cited as an example of a state with a particularly effective OWTS code, and this is reflected in some of our results, surveyed regulators still expressed concerns regarding the future of their regulatory programs. A relatively high percentage (62) did not believe their current regulatory program adequate to protect public health into the future. As specific examples of concerns, about half of the Wisconsin regulators believed that older systems were a problem within their county. Six expressed concerns regarding growing development pressures. Five thought that a lack of consistent homeowner maintenance of various types of systems was going to be a problem. Several believed their staff would be stretched thin attempting to keep up with the growth of systems, especially alternative ones. Only three Wisconsin regulators did not anticipate developing any new, significant OWTS-related problems over the next 25 years. Most also told us that they do not fully recover the cost of permitting alternative systems from permit fees, and five Wisconsin regulators reported that their budgets had either significantly decreased or that they were having trouble with funding their work.

Ohio

For Ohio, we surveyed seven regulators and had one nonrespondent. Based on the description of permitting procedures provided by regulators, the Ohio code is more prescriptive than Wisconsin’s code. At the time of our survey, regulators were operating under a 1977 code that did not incorporate alternative system regulation. Ohio respondents were therefore particularly likely to agree with the statement that their code (local and/or state) needs to be updated to more effectively deal with alternative systems. Legislation requiring revisions to the existing code have since been passed (Ohio Department of Health, 2005).

Ohio regulations do permit alternative systems but not as many as in Wisconsin. Most regulators surveyed (five of seven) indicated that less than 20 percent of all systems were alternative. One respondent indicated that 80 percent or more of the systems permitted within their county in 2002 were alternative; another estimated between 20 and 40 percent. Interestingly, no Ohio respondent indicated that they were having trouble funding work related to these types of systems. However, five out of the seven told us that their area did not have sufficient numbers of reliable contractors to perform maintenance on alternative systems. Their concerns about the future also related to their ability to regulate alternative systems. When asked what problems they anticipated encountering over the next 25 years, two were worried about the lack of adequate soils for OWTS on remaining undeveloped parcels, and three were concerned about the inadequacy of their monitoring of alternative systems. Six out of the seven told us that older system failure was a problem within their jurisdiction, while four believed that their regulatory program was sufficient to protect public health into the future. Two of the regulators saw a lack of qualified maintenance providers as a problem, and two did not believe they had sufficient authority to protect public health from septic-related problems. Two respondents said that they didn’t anticipate any new problems.
Although they identified their state code as a problem, some Ohio counties have developed the communication and maintenance program elements required to manage alternative systems effectively. Four Ohio counties had relatively stringent operation and maintenance requirements, and all but one had a computerized permit database. Furthermore, about half of the respondents told us that they had communicated with homeowners in their jurisdiction as a group. In addition, one county reported having at least one private RME within its jurisdiction. The main challenge in Ohio appears to revolve around issues related to aging conventional systems and revising the state code to accommodate alternative systems. These two issues are, to some extent, related; due to site conditions, many aging systems may have to be replaced with alternative systems. Hence, barriers to accommodating alternative systems can also serve as barriers to replacing aging conventional systems. Although most counties appear to have already developed some capacity to manage the permitting of alternative systems, upcoming changes in the state code will facilitate their efforts.

New York

In New York, we surveyed eight regulators and had one nonrespondent. Regulators in New York permit alternative systems at approximately the same level as regulators in Ohio, with three choosing the 20 percent or less option, one at 40 to 60 percent, two at 60 to 80 percent, and one between 80 and 100 percent. However, as a group, they differed from Ohio regulators in two ways: First, three New York regulators told us that they were having trouble funding work related to permitting alternative systems. Second, only two of the regulators had maintenance contract requirements within their jurisdiction, suggesting that they have less capacity to manage a regulatory system that permits alternative systems.

Overall, though, respondents from this state expressed confidence in their programs. Every respondent believed he or she had sufficient authority to protect public health from OWTS-related problems, and six of the eight told us that their regulatory program was adequate to protect public health into the future. New York was also home to one of just three locales within our entire study region that had at least one private and one public RME within its jurisdiction.

Despite confidence in their ability to protect the public health, a number were concerned about falling budgets, with five telling us they were experiencing this. When asked what problems they expected over the next 25 years, two said none, three said problems with the lack of undeveloped sites suitable for OWTS, and three mentioned problems related to system failure. When asked directly, most expressed some concern about regulating alternative and older OWTS; seven agreed with the statement that OWTS more than 20 years old were a problem within their area.

Michigan

As described earlier, Michigan is unusual relative to other states and Ontario. First, it is the only state or province that, at the time of our survey, did not have a state or provincial OWTS code. Secondly, its geography means that the majority of agencies regulating OWTS within the state also border a Great Lake. Because of this, one-third of the regulators surveyed were in Michigan. We surveyed 25 Michigan health department regulators and had no nonrespondents within this state.

Interestingly, in other states or provinces where we interviewed two or more regulators, at least one said that they did not anticipate developing any new or significant future problems. Several also explained that they thought areas within their jurisdiction would increasingly extend sewer lines to newly developed areas. In Michigan, all 25 identified potential future problems of concern, and none thought that sewer extension was going to solve their current prob-
lems. In fact, in response to our open-ended questions, a handful mentioned concerns about the lack of local governmental support for sewer extension. In addition, while 92 percent believed they had sufficient authority to protect public health, 44 percent also felt that their regulatory program was inadequate to protect public health into the future.

In terms of specific concerns, 17 (68 percent) of Michigan regulators anticipated OWTS-related problems due to increases in development and decreases in the availability of land suitable for or parcels big enough to support OWTS. Many anticipated increased demands for alternative systems and feared that their monitoring of maintenance contracts was inadequate. They also expressed concerns about the failure of older systems having an impact on drinking water; 76 percent believed that older systems are a problem within their jurisdiction. Several were also worried that people would not be able to afford replacing a failing OWTS, or that their lots would be inadequate to this task. Michigan regulators were particularly likely to have experienced either significant budgetary decreases and/or troubles with funding in recent years, with 69 percent reporting this problem.

As would be expected in a state with strong local control, the capacities of agencies vary widely. In terms of their capacity to accommodate alternative technologies, 22 Michigan regulators (88 percent) told us that their local code described standards for alternative system permitting. However, a high percentage (67 percent) also agreed with the statement that this code needed to be updated to more effectively regulate these systems. Ten regulators told us that they do not require a maintenance contract as a condition of permitting an alternative system. Fifty-six percent (14) told us they did not have sufficient numbers of reliable contractors to service these systems. All but one has a computerized permit database, but only about 20 percent update them every time property changes hands. Six Michigan health departments had at least one RME within their boundaries, with one department being one of only three agencies within our study area reporting having both a public and private RME.

In discussing alternative systems in Michigan, it should be noted that Michigan regulators often do not define mound systems as alternative, and many Michigan regulators frequently issue permits for various types of mound systems. Therefore, although 16 regulators said 20 percent or fewer of 2002 permits were for alternative systems, alternative systems are an important issue in Michigan. About half did not fully recover the cost of permitting alternative systems through permit fees, and nearly all of these (10 or 42 percent of surveyed Michigan regulators) told us they were having trouble funding this work. The importance of this issue is underscored by the fact that many Michigan regulators expected alternative system use to rise in near future.

Michigan's budgetary decreases, lack of uniformly strong operation and maintenance requirements, and anticipated increased development pressures are not unique within our study region. However, with a large percentage of land bordering or proximate to a Great Lake, high lakeshore development pressures, relatively high environmental sensitivity, and a dependence on local OWTS codes, Michigan faces a challenge in ensuring that all local agencies are up to the task. The current effort to pass legislation requiring a uniform statewide code, if successful, could help in that task.

Ontario

We surveyed about a third of Ontario's coastal OWTS regulators within each of the major regions bordering a Great Lake sampling at least one regulator from the various levels of OWTS oversight—building departments in municipalities, local or regional health units, and conservation agencies. This resulted in a sample of 13 Ontario regulators with no respondents. Seven worked with building departments, five with health units, and one with a conservation authority.

All of the surveyed agencies permitted alternative systems, though about half of their codes did not describe standards for alternative OWTS permitting. Most regulators from Ontario said that 20 percent or less of OWTS permits were for alternative systems in 2002; only one said that they comprised 80 percent or more. Furthermore, most felt that they had sufficient numbers of reliable contractors to do operation and maintenance work on alternative OWTS. Most also had computerized permit databases and could communicate with all homeowners with OWTS within their jurisdiction. Five had done so.

In general, Ontario regulators felt confident that they had sufficient regulatory authority to protect public health; however, seven believed that their overall regulatory program was insufficient to protect public health in the future. In terms of specific challenges, six believed that old OWTS represented the main problem within their area. Four were concerned about growing development pressures. Four expected OWTS-related drinking water problems, and one advocated for integrating well and septic regulations. One worried about the cost of replacement systems, and another said that keeping up with changes in alternative system technologies was going to be a problem. Another four did not anticipate developing significant new problems related to OWTS within the next 25 years.

All in all, the responses of Ontario regulators and the capacities of their agencies parallel those of U.S. regulators. Ontario respondents were, however, less likely to have experienced significant budgetary changes than their U.S. counterparts. Nearly all fully recovered the cost of permitting alternative systems through permit fees; only two told us that they were having trouble funding this work. Two also reported significant budget decreases, one of whom had also reported trouble funding the alternative system program.

Discussion

The management of OWTS is undergoing a shift from a regulatory system predominantly based on the use of conventional gravity-fed septic systems to one that accommodates alternative technologies on sites poorly suited for conventional systems. Accompanying this shift is a greater emphasis on ensuring that OWTS are designed appropriately, and, once in operation, continue to perform as designed. The emphasis on operation and maintenance is partly due to a greater use of higher maintenance components (such as
pumps, filters, and controls) and partly due to concerns with aging conventional systems. There is also a shift in perception occurring, with people coming to recognize that residential onsite disposal systems are permanent mini wastewater treatment facilities that should be regulated as such.

Our survey suggests that, within the Great Lakes regulatory community, the cultural shift toward perceiving residential onsite systems as permanent mini wastewater treatment facilities has already occurred. Regulators are generally aware of the program elements appropriate for this type of regulation, and some states and locales have taken significant steps toward integrating these program elements into their codes and policies. However, we suspect that most people outside the regulatory community such as homeowners, developers, and local elected officials have not yet reconciled themselves to this shift. In general, homeowners have come to take low expenses after installation for granted and often do not understand the consequences of degraded performance. Furthermore, when problems do occur, they tend to be local, unlikely to make newspaper headlines. As a result, it is easy to delay action, leaving future homeowners and municipalities to deal with numerous small but potentially costly and contentious contamination problems.

Although OWTS regulators throughout the country are experiencing similar challenges, those in the Great Lakes region are particularly acute. First, much of the region is sparsely populated, which encourages the type of development that favors decentralized OWTS over centralized sewers. Second, the region is home to numerous inlets and inland lakes, which tend to be both environmentally sensitive and attractive to develop. In some areas, however, the remaining undeveloped shoreline lots are poorly suited for conventional OWTS precisely because of their shoreline characteristics. Therefore, homeowners and developers who build on these sites often compensate for a site’s limiting conditions by turning to alternative technologies. In addition, many seasonal cottages with substandard wastewater treatment can be found in the Great Lakes area, and as land-use patterns change, owners are finding that they cannot bring their OWTS up to code without using alternative technologies. While some areas within the Great Lakes may choose to extend sewer lines to address concerns, most regulators surveyed indicated that this was unlikely to occur throughout the area for which they have responsibility.

Although many agencies have taken steps to address the challenges and concerns associated with permitting alternative systems, few have been able to implement all the program elements recommended by the EPA. Recommending specific actions is difficult as there is significant variation in regulatory programs across the region. In general, though, our results suggest that the focus should be on strengthening program elements related to (a) post-permit inspections, especially when ownership changes; (b) maintenance contract requirements; and (c) ability to utilize RMEs. Requiring inspections when a home changes ownership is especially valuable, because it provides an opportunity to make homeowners aware of their systems and to keep an agency’s records up to date. Such inspections also complement the use of maintenance contracts, which depend on homeowners being aware of this requirement and on having well maintained records; if backed up with a network of trained service providers, maintenance contracts can be used to ensure that systems continue to operate as designed. Finally, relatively few locales have much experience with RMEs, but gaining that experience, and establishing the means to establish and utilize RMEs, can help an agency in the long-term by reducing the burden of administering maintenance contracts and performing inspections. RMEs can also open the door to novel configurations that are potentially more efficient and effective than individual homeowners owning, operating, and maintaining individual systems.

While well-written state or local codes can provide critical support for an effective regulatory program, they are not, however, in and of themselves, sufficient. After all, there is notable variation in OWTS programs within Ontario and individual states, even though most have province- or statewide codes. Codes need to be backed up with healthy department budgets and good external relations to contractors, local government officials, homeowners, and other private organizations and public agencies with overlapping interests.

Although no OWTS code can guarantee the ability of a locale to manage a regulatory program, it is important to note that the choice between prescriptive and performance-based OWTS codes is an issue within the region. Performance-based codes accommodate the permitting of alternative technologies and help to ensure that these systems continue to operate as designed by requiring program elements such as maintenance contracts. Problems will tend to occur when performance-based codes are used in locales with, for instance, few sufficiently trained contractors, inadequate regulatory requirements for operation and maintenance contracts, or insufficiently staffed or funded regulatory agencies. In addition, locales that make the shift from prescriptive to performance-based permitting may also have to change the mix OWTS professionals they employ, with potential impacts on system and permit costs. Communities that continue to regulate as they always have, simply requiring construction permits and responding only when contamination is detected, face no dramatic problems in the short term. The individual failures that occur do not each represent a major crisis. In the long term, however, communities that do not rise to the regulatory challenge are likely to see a significant rise in the number of OWTS failure-related problems. In addition to increasing numbers of alternative systems being permitted due to changing land use patterns and infrastructure planning, significant numbers of aging conventional systems are beginning to fail or may have already failed, and many will have to be replaced by alternative systems in the future. And while a single onsite sewage system operating at a degraded level of performance might not be much of a problem, the accumulation of many systems performing at degraded levels poses more serious concerns.
Acknowledgements
We thank the Joyce Foundation for their generous funding of our research. We also thank our research assistants, Salvador Keith, Susan Joyce, Melanie Barbier, and Agustin Morua Robles, for their invaluable help with this project. We also greatly appreciate the suggestions made by anonymous referees and the generosity of the many OWTS regulatory program directors whose detailed answers to our many questions allowed us to gain a full picture of OWTS regulation around the Great Lakes.

References

Hugh Gorman, Ph.D., is associate professor of environmental policy and history at Michigan Technological University. He studies the interaction of policy, technology, and the environment, and is especially interested in the process by which complex technological systems come to be made more compatible with natural systems and human uses of the environment. He is the author of Redefining Efficiency: Pollution Concerns, Regulatory Mechanisms, and Technological Change in the U.S. Petroleum Industry. He can be reached at hsgorman@mtu.edu.

Kathleen E. Halvorsen, Ph.D., is a faculty member in the social sciences department at the Michigan Technological University School of Forest Resources and Environmental Science where she oversees the graduate program in environmental policy. She can be reached at kehalvor@mtu.edu.