Leak Detection and Water Loss Control

by Zacharia M. Lahlou, Ph.D.
Civil and Environmental Engineer, Wiley and Wilson, Lynchburg, VA

Summary
Utilities can no longer tolerate inefficiencies in water distribution systems and the resulting loss of revenue associated with underground water system leakage. Increases in pumping, treatment and operational costs make these losses prohibitive. To combat water loss, many utilities are developing methods to detect, locate, and correct leaks.

Old and poorly constructed pipelines, inadequate corrosion protection, poorly maintained valves and mechanical damage are some of the factors contributing to leakage. One effect of water leakage, besides the loss of water resources, is reduced pressure in the supply system. Raising pressures to make up for such losses increases energy consumption. This rise in pressure makes leaking worse and has adverse environmental impacts.

In general, a 10 to 20 percent allowance for unaccounted-for-water is normal. But a loss of more than 20 percent requires priority attention and corrective actions. However advances in technologies and expertise should make it possible to reduce losses and unaccounted-for-water to less than 10 percent. While percentages are great for guidelines, a more meaningful measure is volume of lost water. Once the volume is known, revenue losses can be determined and cost effectiveness of implementing corrective action can then be determined.

Benefits of Leak Detection and Repair
The economic benefits of leak detection and repair can be easily estimated. For an individual leak, the amount lost in a given period of time, multiplied by the retail value of that water will provide a dollar amount. Remember to factor in the costs of developing new water supplies and other “hidden” costs.
There are different types of leaks, including service line leaks, and valve leaks, but in most cases, the largest portion of unaccounted-for water is lost through leaks in the mains. There are many possible causes of leaks, and often a combination of factors leads to their occurrence. The material, composition, age, and joining methods of the distribution system components can influence leak occurrence. Another related factor is the quality of the initial installation of distribution system components. Water conditions are also a factor, including temperature, aggressiveness, and pressure. External conditions, such as stray electric current; contact with other structures; and stress from traffic vibrations, frost loads, and freezing soil around a pipe can also contribute to leaks. All water plants will benefit from a water accounting system that helps track water throughout the distribution system and identifies areas that may need attention, particularly large volumes of unaccounted-for water.

Calculating Unaccounted-for Water

Unaccounted-for water is the difference between water produced (metered at the treatment facility) and metered use (i.e., sales plus non-revenue producing metered water). Unaccounted-for water can be expressed in millions of gallons per day (mgd) but is usually discussed as a percentage of water production:

\[
\text{Unaccounted-for water} (\%) = \frac{(\text{Production} - \text{metered use}) \times 100}{\text{Production}}
\]

Leak detection efforts should focus on the portion of the distribution
system with the greatest expected problems, including:

- areas with a history of excessive leak and break rates;
- areas where leaks and breaks can result in the heaviest property damage;
- areas where system pressure is high;
- areas exposed to stray electric current and traffic vibration;
- areas near stream crossings; and
- areas where loads on pipe exceed design loads.

Of course, detecting leaks is only the first step in eliminating leakage. Leak repair is the more costly step in the process. Repair clamps, or collars, are the preferred method for repairing small leaks, whereas larger leaks may require replacing one or more sections of pipe.

On average, the savings in water no longer lost to leakage outweigh the cost of leak detection and repair. In most systems, assuming detection is followed by repair, it is economical to completely survey the system every one to three years.

Instead of repairing leaking mains, some argue it is preferable to replace more leak-prone (generally older) pipes. Selecting a strategy depends upon the frequency of leaks in a given pipe and the relative costs to replace and repair them.

Deciding whether to emphasize detection and repair over replacement depends upon site-specific leakage rates and costs. In general, detection and repair result in an immediate reduction in lost water, whereas replacement will have a longer-lasting impact to the extent that it eliminates the root cause of leaks.

The most important factor in a leak detection and repair program is the need for accurate, detailed records that are consistent over time and easy to analyze. Records concerning water production and sales, and leak and break costs and benefits, will become increasingly important as water costs and leak and break damage costs increase and as leak detection and rehabilitation programs become more important. In order to optimize these programs by allocating funds in such a way that results in the greatest net benefits, adequate information is needed on which to base decisions and determine needs. Three sets of records should be kept: (1) monthly reports on unaccounted-for water comparing cumulative sales and production (for the last 12 months, to adjust discrepancies caused by the billing cycle); (2) leak-repair report forms; and (3) updated maps of the distribution system showing the location, type, and class of each leak.

Coordinating Leak Detection and Repair with Other Activities
In addition to assisting with decisions about rehabilitation and replacement, the leak detection and repair program can further other water utility activities, including:

- inspecting hydrants and valves in a distribution system;
- updating distribution system maps;
- using remote sensor and telemetry technologies for ongoing monitoring and analysis of source, transmission, and distribution facilities. Remote sensors and monitoring software can alert operators to leaks, fluctuations in pressure, problems with equipment integrity, and other concerns; and
- inspecting pipes, cleaning, lining, and other maintenance efforts to improve the distribution system and prevent leaks and ruptures from occurring. Utilities might also consider methods for minimizing water used in routine water system maintenance.

Beyond Leak Detection and Repair
Detecting and repairing leaks is only one water conservation alternative; others include: meter testing and repair/replacement, rehabilitation and replacement programs, installing flow-reducing devices, corrosion control, water pricing
policies that encourage conservation, public education programs, pressure reduction, requests for voluntary cutbacks or bans on certain water uses, and water recycling.

Where can I find more information?

For further information, comments about this fact sheet, or to suggest topics, contact Lahlou via e-mail at lahloum@hotmail.com.

Tech Briefs, drinking water treatment fact sheets have been a regular feature in the National Drinking Water Clearinghouse (NDWC) newsletter *On Tap* for more than five years. Former NDWC Technical Assistance Coordinator Zacharia M. Lahlou, Ph.D., researches, compiles information, and writes these very popular items.

Tech Brief: Disinfection, item #DWBLPE47;
Tech Brief: Filtration, item #DWBLPE50;
Tech Brief: Corrosion Control, item #DWBLPE52;
Tech Brief: Ion Exchange and Demineralization, item #DWBLPE56;
Tech Brief: Organics Removal, item #DWBLPE59;
Tech Brief: Package Plants, item #DWBLPE63;
Tech Brief: Water Treatment Plant Residuals Management, item #DWBLPE65;
Tech Brief: Lime Softening, item #DWBLPE67;
Tech Brief: Iron and Manganese Removal, item #DWBLPE70;
Water Conservation Measures Fact Sheet, item #DWBLPE74;
Tech Brief: Membrane Filtration, item #DWBLPE81;
Tech Brief: Treatment Technologies for Small Drinking Water Systems, item #DWPSPE82;
Tech Brief: Ozone, item #DWBLPE84;
Tech Brief: Radionuclides, item #DWBLPE84;
Tech Brief: Slow Sand Filtration, item #DWBLPE99;
Tech Brief: Ultraviolet Disinfection, item #DWBLPE101;
Tech Brief: Leak Detection and Water Loss Control, item #DWBLPE102.

A package of the *Tech Briefs* is now available as a product. A three-ring binder holds all the current *Tech Briefs* in print. New selections can be easily added to the package as they become available. To order this product, call the NDWC at the numbers listed below and ask for item #DWPKPE71. The item is free.

Additional copies of fact sheets are also free; however, postal charges may be added.

To order, call the NDWC at (800) 624-8301 or (304) 293-4191. You also may order online at ndwc_order@mail.nesc.wvu.edu or download fact sheets from our Web site at www.ndwc.wvu.edu.

Zacharia M. Lahlou, Ph.D., formerly technical assistance coordinator with the National Drinking Water Clearinghouse, is a civil and environmental engineer with Wiley & Wilson, Lynchburg, VA. Lahlou received a doctorate in Environmental and Natural Resources Economics, an MBA and a Master of Science in Civil and Environmental Engineering from West Virginia University. He may be reached by e-mail at lahloum@hotmail.com.